Tuesday, October 20, 2020

SOAL CERITA UNTUK MENENTUKAN NILAI OPTIMUM

 Soal Cerita untuk menentukan Nilai Optimum

1. Untuk memproduksi sepeda jenis A dengan harga jual Rp.600.000 suatu perusahaan membutuhkan biaya Rp. 200.000 dan waktu 20 jam. Sedangkan sepeda jenis B dengan harga jual Rp. 800.000 membutuhkan biaya Rp. 100.000 dengan waktu 30 jam. Jika dana yang tersedia Rp. 1.200.000 dan waktu kerja 240 jam per bulan, maka tentukanlah hasil penjualan maksimum yang diperoleh tiap bulan

Jawab :

Misalkan

x = banyaknya sepeda jenis A

y = banyaknya sepeda jenis B

maka dapat disusun kendala biaya dan waktu produksi sebagai berikut:

200000x + 100000y ≤ 1200000

20x + 30y ≤ 240

x ≥ 0

y ≥ 0

Jika disederhanakan menjadi :

2x + y ≤ 12

2x + 3y ≤ 24

x ≥ 0

y ≥ 0

Fungsi penjualan : f(x, y) = 600000x + 800000y

Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

 

Titik A koordinatnya adalah A(0, 8)

Titik C koordinatnya adalah C(6, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena 2x + y = 12 maka 2x + 6 = 12, sehingga 2x = 6, jadi  x = 3

Jadi koordinat titik B adalah B(3, 6)

Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 600000x + 800000y, sehingga diperoleh :

A(0, 8) → f(A) = 600000(0) + 800000(8) = 6.400.000

B(6, 2) → f(B) = 600000(6) + 800000(2) = 5.200.000

C(3, 6) → f(C) = 600000(3) + 800000(6) = 6.600.000

Jadi hasil penjualan maksimum yang diperoleh tiap bulan adalah Rp. 6.600.000


2. Seorang anak diharuskan memakan dua jenis tablet tiap hari. Tablet pertama mengandung 2 unit vitamin A dan 2 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak itu memerlukan paling sedikit 12 unit vitamin A dan 8 unit vitamin B. Jika harga tablet pertama Rp. 500 perbutir dan tablet kedua Rp. 1.000 perbutir maka agar pengeluaran minimum banyak tablet pertama yang harus dibeli adalah …

Jawab

Misalkan x = banyaknya tablet jenis pertama

y = banyaknya tablet jenis kedua

maka dapat disusun kendala kebutuhan vitamin A dan vitamin B sebagai berikut:

Dari tabel di atas dapat disusun kendala, yakni :
2x + 3y ≥ 12
2x + y ≥ 8
x ≥ 0
y ≥ 0
Fungsi pengeluaran f(x, y) = 500x + 1000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 8)

Titik C koordinatnya adalah C(6, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena 2x + y = 8 maka 2x + 2 = 8, sehingga 2x = 6 , x =3
Jadi koordinat titik B adalah B(3, 2)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 500x + 1000y, sehingga diperoleh :
A(0, 8) → f(A) = 500(0) + 1000(8) = 8.000
B(3, 2) → f(B) = 500(3) + 1000(2) = 3.500
C(6, 0) → f(C) = 500(6) + 1000(0) = 3.000
Jadi besarnya pengeluaran minimum Rp. 3.000 didapat jika dibeli 6 tablet pertama


3. Seorang pedagang minuman menjual dua jenis minuman ringan pada suatu tempat yang dapat menampung 500 botol minuman. Harga beli minuman jenis A dan jenis B masing-masing Rp. 2000 dan Rp 4000 per botol. Jika ia memiliki modal Rp. 1.600.000 serta akan memperoleh laba perbuah Rp. 800 untuk minuman jenis A dan Rp. 600 untuk minuman jenis B, maka berapakah banyaknya minuman minuman jenis A dan B agar diperoleh laba maksimum ?


Jawab

Misalkan

x = banyaknya minuman jenis A

y = banyaknya minuman jenis B

maka dapat disusun kendala modal dan kapasitas kios sebagai berikut:

x + y ≤ 500

2000x + 4000y ≤ 1.600.000

x ≥ 0

y ≥ 0

Jika disederhanakan menjadi :

x + y ≤ 500

x + 2y ≤ 800

x ≥ 0

y ≥ 0

Fungsi laba : f(x, y) = 800x + 600y

Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 400)

Titik C koordinatnya adalah C(500, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena x + y = 500 maka x + 300 = 500, sehingga x = 200
Jadi koordinat titik B adalah B(200, 300)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 800x + 600y, sehingga diperoleh :
A(0, 400)     → f(A) = 800(0) + 600(400) = 240.000
B(200, 300) → f(B) = 800(200) + 600(300) = 360.000
C(500, 0)     → f(C) = 800(500) + 600(0) = 400.000
Jadi keuntungan maksimum yakni sebesar Rp. 400.000 diperoleh jika dijual minuman jenis A saja sebanyak 500 botol

No comments:

Post a Comment

Remedial PAT