Monday, October 26, 2020
KOMPOSISI 2, 3, 4 TRANSFORMASI (GABUNGAN TRANSLASI, REFLEKSI, ROTASI, DILATASI) 1 BALOK
Tuesday, October 20, 2020
SOAL CERITA UNTUK MENENTUKAN NILAI OPTIMUM
Soal Cerita untuk menentukan Nilai Optimum
1. Untuk memproduksi sepeda jenis A dengan harga jual Rp.600.000 suatu perusahaan membutuhkan biaya Rp. 200.000 dan waktu 20 jam. Sedangkan sepeda jenis B dengan harga jual Rp. 800.000 membutuhkan biaya Rp. 100.000 dengan waktu 30 jam. Jika dana yang tersedia Rp. 1.200.000 dan waktu kerja 240 jam per bulan, maka tentukanlah hasil penjualan maksimum yang diperoleh tiap bulan
Jawab :
Misalkan
x = banyaknya sepeda jenis A
y = banyaknya sepeda jenis B
maka dapat disusun kendala biaya dan waktu produksi sebagai berikut:
200000x + 100000y ≤ 1200000
20x + 30y ≤ 240
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
2x + y ≤ 12
2x + 3y ≤ 24
x ≥ 0
y ≥ 0
Fungsi penjualan : f(x, y) = 600000x + 800000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena 2x + y = 12 maka 2x + 6 = 12, sehingga 2x = 6, jadi x = 3
Jadi koordinat titik B adalah B(3, 6)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 600000x + 800000y, sehingga diperoleh :
A(0, 8) → f(A) = 600000(0) + 800000(8) = 6.400.000
B(6, 2) → f(B) = 600000(6) + 800000(2) = 5.200.000
C(3, 6) → f(C) = 600000(3) + 800000(6) = 6.600.000
Jadi hasil penjualan maksimum yang diperoleh tiap bulan adalah Rp. 6.600.000
2. Seorang anak diharuskan memakan dua jenis tablet tiap hari. Tablet pertama mengandung 2 unit vitamin A dan 2 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak itu memerlukan paling sedikit 12 unit vitamin A dan 8 unit vitamin B. Jika harga tablet pertama Rp. 500 perbutir dan tablet kedua Rp. 1.000 perbutir maka agar pengeluaran minimum banyak tablet pertama yang harus dibeli adalah …
Jawab
Misalkan x = banyaknya tablet jenis pertama
y = banyaknya tablet jenis kedua
maka dapat disusun kendala kebutuhan vitamin A dan vitamin B sebagai berikut:
Dari tabel di atas dapat disusun kendala, yakni :
2x + 3y ≥ 12
2x + y ≥ 8
x ≥ 0
y ≥ 0
Fungsi pengeluaran f(x, y) = 500x + 1000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
Titik A koordinatnya adalah A(0, 8)
Titik C koordinatnya adalah C(6, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
karena 2x + y = 8 maka 2x + 2 = 8, sehingga 2x = 6 , x =3
Jadi koordinat titik B adalah B(3, 2)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 500x + 1000y, sehingga diperoleh :
A(0, 8) → f(A) = 500(0) + 1000(8) = 8.000
B(3, 2) → f(B) = 500(3) + 1000(2) = 3.500
C(6, 0) → f(C) = 500(6) + 1000(0) = 3.000
Jadi besarnya pengeluaran minimum Rp. 3.000 didapat jika dibeli 6 tablet pertama
3. Seorang pedagang minuman menjual dua jenis minuman ringan pada suatu tempat yang dapat menampung 500 botol minuman. Harga beli minuman jenis A dan jenis B masing-masing Rp. 2000 dan Rp 4000 per botol. Jika ia memiliki modal Rp. 1.600.000 serta akan memperoleh laba perbuah Rp. 800 untuk minuman jenis A dan Rp. 600 untuk minuman jenis B, maka berapakah banyaknya minuman minuman jenis A dan B agar diperoleh laba maksimum ?
Jawab
Misalkan
x = banyaknya minuman jenis A
y = banyaknya minuman jenis B
maka dapat disusun kendala modal dan kapasitas kios sebagai berikut:
x + y ≤ 500
2000x + 4000y ≤ 1.600.000
x ≥ 0
y ≥ 0
Jika disederhanakan menjadi :
x + y ≤ 500
x + 2y ≤ 800
x ≥ 0
y ≥ 0
Fungsi laba : f(x, y) = 800x + 600y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas
Titik A koordinatnya adalah A(0, 400)
Titik C koordinatnya adalah C(500, 0)
Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :
Sunday, October 18, 2020
SOAL TRANSFORMASI DAN PENYELESAIANNYA
Jawaban : C
Pembahasan :
2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah ….
A. y = x² – 2x – 3
B. y = x² – 2x + 3
C. y = x² + 2x + 3
D. x = y² – 2y – 3
E. x = y² + 2y + 3
Jawaban : D
Pembahasan :
Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri.
pencerminan terhadap garis y = -x
3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks adalah….
A. x² + y² – 6x – 4y- 3 = 0
B. X² + y² – 6x + 4y- 3 = 0
C. x² + y² + 6x – 4y- 3 = 0
D. x² + y² – 4x + 6y- 3 = 0
E. x² + y² + 4x – 6y+ 3 = 0
Jawaban : A
Pembahasan :
4. T1 dan T2 adalah transformasi yang masing-masing bersesuaian dengan Ditentukan T = T1 o T2 , maka transformasi T bersesuaian dengan matriks…
Jawaban : E
Pembahasan :
5. Ditentukan matriks transformasi . Hasil transformasi titik (2,-1) terhadap T1 dilanjutkan T2 adalah….
A. (-4,3)
B. (-3,4)
C. (3,4)
D. (4,3)
E. (3,-4)
Jawaban : A
Pembahasan :
6. Persamaan bayangan garis y = -6x + 3 karena transformasi oleh matriks kemudian dilanjutkan dengan matriks adalah…
A. x + 2y + 3 = 0
B. x + 2y – 3 = 0
C. 8x – 19y + 3 = 0
D. 13x + 11y + 9 = 0
E. 13x + 11y – 9 = 0
Jawaban : E
Pembahasan :
7. Bayangan titik A (4,1) oleh pencerminan terhadap garis x =2 dilanjutkan pencerminan terhadap garis x = 5 adalah titik….
A. A” (8,5)
B. A” (10,1)
C. A” (8,1)
D. A” (4,5)
E. A” (20,2)
Jawaban : B
Pembahasan :
8. T1 adalah transformasi yang bersesuaian dengan matriks dan T2 adalah transformasi yang bersesuaian dengan matriks Bayangan A (m,n) oleh transformasi T1 o T2 adalah (-9,7). Nilai m+n sama dengan…
A. 4
B. 5
C. 6
D. 7
E. 8
Jawaban : B
Pembahasan :
9. Bayangan ∆ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (0,90°) adalah…
A. A” (-1,-2), B” (1,6) dan C” (-3,-5)
B. A” (-1,-2), B” (1,-6) dan C” (-3,-5)
C. A” (1,-2), B” (-1,6) dan C” (-3,5)
D. A” (-1,-2), B” (-1,-6) dan C” (-3,-5)
E. A” (-1,2), B” (-1,-6) dan C” (-3,-5)
Jawaban : D
Pembahasan :
10. Persamaan peta kurva y = x² – 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah…
A. 3y + x² – 9x + 18 = 0
B. 3y – x² + 9x – 18 = 0
C. 3y – x² + 9x + 18 = 0
D. 3y + x² + 9x + 18 = 0
E. y + x² + 9x – 18 = 0
Jawaban : A
Pembahasan :
pencerminan terhadap sumbu x:
P ( x , y ) → P ‘ ( x , – y )
Dilatasi terhadap titik pusat O(0,0) dengan factor skala 3 :
[O, k] : P(x,y) → P'(kx, ky)
[O,3k] : P(x,y) → P'(3x, 3y)
pencerminan terhadap sumbu x dilanjutkan dilatasai
dengan pusat O dan factor skala 3 :
P(x,y) → P ‘(x, -y) → P ”(3x, -3y)
11. Luas bayangan persegipanjang PQRS dengan
P(-1,2), Q(3,2), R (3,-1), S(-1,-1)
karena dilatasi [0,3] dilanjutkan rotasi pusat O bersudut π/2 adalah…
A. 36
B. 48
C.72
D. 96
E. 108
Jawaban : E
Pembahasan :
dilatasi [0,3] :
[O,3k] : P(x,y) → P ‘(3x, 3y)
Sehingga :
P(x,y) → P” (-3y, 3x)
P(-1,2), Q(3,2), R (3,-1), S(-1,-1)
P(-1,2) → P” (-6,-3)
Q(3,2) → Q” (-6,9)
R (3,-1) → R” (3,9)
S(-1,-1) → S” (3,-3)
Buat sketsa gambarnya:
Sehingga luas transformasinya adalah :
Panjang (p) x lebar (l) = 12 x 9 = 108 satuan luas
12. Segitiga ABC dengan A(2,1), B(6,1), C(6,4) ditransformasikan dengan matriks transformasi Luas bangun hasil transformasi segitiga ABC adalah….
A. 56 satuan luas
B. 36 satuan luas
C. 28 satuan luas
D. 24 satuan luas
E. 18 satuan luas
Jawaban : E
Pembahasan :
misalkan T = maka
Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC |det T| = |ad –bc| = |3-0| = 3
luas ∆ ABC :
buat sketsa gambar :
Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC
= 3 x 6 = 18 satuan luas
13. Tentukan bayangan lingkaran (x-3)2 + (y+1)2 = 4 jika ditranslasikan
a. 5
b. 4
c. 3
d. 2
e. 1
Jawaban : B
Pembahasan :
Ambil sembarang titik P(a,b) pada lingkaran (x-3)2 + (y+1)2 = 4 sehingga diperoleh (a-3)2 + (b+1)2 = 4
14. ABCD adalah sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh dilatasi [O,2]!
Jawaban :
Pembahasan :
15. Jika titik A(15,8) dicerminkan terhadap garis x=7, maka bayangan titik A adalah titik A’ dengan koordinat….
Jawaban :
Pembahasan :
DAFTAR PUSTAKA : https://soalkimia.com/contoh-soal-transformasi-geometri/
Monday, October 5, 2020
SOAL DAN PEMBAHASAN MATEMATIKA SMA KELAS 11 SEMESTER GANJIL
Arman membeli 5 pensil dan 3 penghapus, sedangkan susi membelu 4 pensil dan 2 penghapus di toko yang sama. Di kasir, arman membayar Rp. 11.500 sedangkan susi membayar RP. 9.000. Jika doni membeli 6 dan 5 penghapus, berapa ia harus membayar
Jawaban
x = pensil
y = penghapus
5x + 3 y = 11.500 (x2)
4x + 2 y = 9.000 (x3)
_______________
10x + 6 y = 23.000
12x + 6y = 27.000
_______________ (-)
-2x = -4.000
x = 2.000
4x + 2y = 9.000
4*2000 + 2y = 9000
2y = 1000
y = 500
jadi harga pensil = 2000 dan penghapus = 500
sehingga doni harus membayar 6*2000 + 5*500 = 12.000+2.500 = 14.500
No 24
Bu Ani seorang pengusaha makanan kecil yang menyetorkan dagangannya ke tiga kantin sekolah. Tabel banyaknya makanan yang disetorkan setiap harinya sebagai berikut. Kacang Keripik Permen Kantin A | 10 | 10 | 5 | Kantin B | 20 | 15 | 8 | Kantin C | 15 | 20 | 10 | (Dalam satuan bungkus) Harga sebungkus kacang, sebungkus keripik, dan sebungkus permen berturut-turut adalah Rp 2.000,00; Rp 3.000,00; dan Rp 1.000,00. Pertanyaan: a. Nyatakan banyaknya makanan yang disetorkan setiap harinya dengan matriks b. Nyatakan harga makanan dalam bentuk matriks c. Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks d. Carilah determinan matriks dari banyaknya makanan yang disetorkan setiap harinya
Jawaban
No 25
Lisa dan muri bekerja pada pabrik tas. Lisa dapar menyelesaikan 3 buah setiap jam dan muri dapat menyelesaikan 4 tas setiap jam jumlah jam kerja lisa dan muri adalah 16 jam sehari dengan jumlah tas yang dibuat oleh keduanya adalah 55 tas. Jika jam kerja keduanya berbeda, lisa bekerja selama x jam dan muri bekerja selama y jam, maka model matematika penyrlrsaian masalah tersebut menggunakan matriks adalah
Jawaban
-
1. Pada segitiga ABC lancip, diketahui cos A = 4/5 dan sin B = 12/13 maka sin C = ... Pembahasan: jika cos A = 4/5, maka: sin A = ...
-
Soal 1 Arman membeli 5 pensil dan 3 penghapus, sedangkan Susi membeli 4 pensil dan 2 penghapus di toko yang sama. Di kasir, Arman membayar...
-
Kemonotonan Definisi Kemonotonan Misalkan 𝑓 terdefinisi pada interval I (terbuka, tertutup, atau tak satupun), kita katakan bahwa : 1. 𝑓 ...