Monday, October 26, 2020

KOMPOSISI 2, 3, 4 TRANSFORMASI (GABUNGAN TRANSLASI, REFLEKSI, ROTASI, DILATASI) 1 BALOK

NAMA : M. Aydin Ramadhan (20)
KELAS : XI IPS 2
KOMPOSISI 2, 3, 4 TRANSFORMASI (GABUNGAN TRANSLASI, REFLEKSI, ROTASI, DILATASI) 1 BALOK YG TITIK KOORDINATNYA A(2,2), B(5,2), C(5,4), D(2,4), E(4,3), F(7,3), G(7,5), H(4,5) Dan perhitungan dengan perhitungan biasa dan perhitungan matriks






Tuesday, October 20, 2020

SOAL CERITA UNTUK MENENTUKAN NILAI OPTIMUM

 Soal Cerita untuk menentukan Nilai Optimum

1. Untuk memproduksi sepeda jenis A dengan harga jual Rp.600.000 suatu perusahaan membutuhkan biaya Rp. 200.000 dan waktu 20 jam. Sedangkan sepeda jenis B dengan harga jual Rp. 800.000 membutuhkan biaya Rp. 100.000 dengan waktu 30 jam. Jika dana yang tersedia Rp. 1.200.000 dan waktu kerja 240 jam per bulan, maka tentukanlah hasil penjualan maksimum yang diperoleh tiap bulan

Jawab :

Misalkan

x = banyaknya sepeda jenis A

y = banyaknya sepeda jenis B

maka dapat disusun kendala biaya dan waktu produksi sebagai berikut:

200000x + 100000y ≤ 1200000

20x + 30y ≤ 240

x ≥ 0

y ≥ 0

Jika disederhanakan menjadi :

2x + y ≤ 12

2x + 3y ≤ 24

x ≥ 0

y ≥ 0

Fungsi penjualan : f(x, y) = 600000x + 800000y

Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

 

Titik A koordinatnya adalah A(0, 8)

Titik C koordinatnya adalah C(6, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena 2x + y = 12 maka 2x + 6 = 12, sehingga 2x = 6, jadi  x = 3

Jadi koordinat titik B adalah B(3, 6)

Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 600000x + 800000y, sehingga diperoleh :

A(0, 8) → f(A) = 600000(0) + 800000(8) = 6.400.000

B(6, 2) → f(B) = 600000(6) + 800000(2) = 5.200.000

C(3, 6) → f(C) = 600000(3) + 800000(6) = 6.600.000

Jadi hasil penjualan maksimum yang diperoleh tiap bulan adalah Rp. 6.600.000


2. Seorang anak diharuskan memakan dua jenis tablet tiap hari. Tablet pertama mengandung 2 unit vitamin A dan 2 unit vitamin B, sedangkan tablet kedua mengandung 3 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak itu memerlukan paling sedikit 12 unit vitamin A dan 8 unit vitamin B. Jika harga tablet pertama Rp. 500 perbutir dan tablet kedua Rp. 1.000 perbutir maka agar pengeluaran minimum banyak tablet pertama yang harus dibeli adalah …

Jawab

Misalkan x = banyaknya tablet jenis pertama

y = banyaknya tablet jenis kedua

maka dapat disusun kendala kebutuhan vitamin A dan vitamin B sebagai berikut:

Dari tabel di atas dapat disusun kendala, yakni :
2x + 3y ≥ 12
2x + y ≥ 8
x ≥ 0
y ≥ 0
Fungsi pengeluaran f(x, y) = 500x + 1000y
Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 8)

Titik C koordinatnya adalah C(6, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena 2x + y = 8 maka 2x + 2 = 8, sehingga 2x = 6 , x =3
Jadi koordinat titik B adalah B(3, 2)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 500x + 1000y, sehingga diperoleh :
A(0, 8) → f(A) = 500(0) + 1000(8) = 8.000
B(3, 2) → f(B) = 500(3) + 1000(2) = 3.500
C(6, 0) → f(C) = 500(6) + 1000(0) = 3.000
Jadi besarnya pengeluaran minimum Rp. 3.000 didapat jika dibeli 6 tablet pertama


3. Seorang pedagang minuman menjual dua jenis minuman ringan pada suatu tempat yang dapat menampung 500 botol minuman. Harga beli minuman jenis A dan jenis B masing-masing Rp. 2000 dan Rp 4000 per botol. Jika ia memiliki modal Rp. 1.600.000 serta akan memperoleh laba perbuah Rp. 800 untuk minuman jenis A dan Rp. 600 untuk minuman jenis B, maka berapakah banyaknya minuman minuman jenis A dan B agar diperoleh laba maksimum ?


Jawab

Misalkan

x = banyaknya minuman jenis A

y = banyaknya minuman jenis B

maka dapat disusun kendala modal dan kapasitas kios sebagai berikut:

x + y ≤ 500

2000x + 4000y ≤ 1.600.000

x ≥ 0

y ≥ 0

Jika disederhanakan menjadi :

x + y ≤ 500

x + 2y ≤ 800

x ≥ 0

y ≥ 0

Fungsi laba : f(x, y) = 800x + 600y

Selanjutnya akan dilukis grafik daerah penyelesaian sistem pertidaksamaan di atas

Titik A koordinatnya adalah A(0, 400)

Titik C koordinatnya adalah C(500, 0)

Sedangkan titik B merupakan perpotongan garis g dan h, diperoleh :

karena x + y = 500 maka x + 300 = 500, sehingga x = 200
Jadi koordinat titik B adalah B(200, 300)
Selanjutnya titik-titik tersebut disubstitusikan ke dalam fungsi optimum yakni f(x,y) = 800x + 600y, sehingga diperoleh :
A(0, 400)     → f(A) = 800(0) + 600(400) = 240.000
B(200, 300) → f(B) = 800(200) + 600(300) = 360.000
C(500, 0)     → f(C) = 800(500) + 600(0) = 400.000
Jadi keuntungan maksimum yakni sebesar Rp. 400.000 diperoleh jika dijual minuman jenis A saja sebanyak 500 botol

Sunday, October 18, 2020

SOAL TRANSFORMASI DAN PENYELESAIANNYA

 1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . .
soal transformasi geometri no 1
Jawaban : C

Pembahasan : 
soal transformasi geometri dan jawaban no 1
2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah …. 
A. y = x² – 2x – 3 
B. y = x² – 2x + 3
C. y = x² + 2x + 3
D. x = y² – 2y – 3
E. x = y² + 2y + 3

Jawaban : D

Pembahasan : 
soal transformasi geometri dan jawaban no 2
Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri.
pencerminan terhadap garis y = -x
soal transformasi geometri dan jawaban no 2-1
3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks soal transformasi geometri no 2 adalah…. 
A. x² + y² – 6x – 4y- 3 = 0
B. X² + y² – 6x + 4y- 3 = 0
C. x² + y² + 6x – 4y- 3 = 0
D. x² + y² – 4x + 6y- 3 = 0
E. x² + y² + 4x – 6y+ 3 = 0

Jawaban : A

Pembahasan : 
soal transformasi geometri dan jawaban no 3
4. T1 dan T2 adalah transformasi yang masing-masing bersesuaian dengan soal transformasi geometri no 4Ditentukan T = T1 o T2 , maka transformasi T bersesuaian dengan matriks…
soal transformasi geometri no 4-1
Jawaban : E

Pembahasan : 
soal transformasi geometri dan jawaban no 4
5. Ditentukan matriks transformasi .soal transformasi geometri no 5 Hasil transformasi titik (2,-1) terhadap T1 dilanjutkan T2 adalah…. 
A. (-4,3)
B. (-3,4)
C. (3,4)
D. (4,3)
E. (3,-4)
Jawaban : A

Pembahasan : 
soal transformasi geometri dan jawaban no 5
6. Persamaan bayangan garis y = -6x + 3 karena transformasi oleh matriks soal transformasi geometri no 6  kemudian dilanjutkan dengan matriks soal transformasi geometri no 6-1adalah…
A. x + 2y + 3 = 0 
B. x + 2y – 3 = 0 
C. 8x – 19y + 3 = 0
D. 13x + 11y + 9 = 0
E. 13x + 11y – 9 = 0

Jawaban : E

Pembahasan : 
soal transformasi geometri dan jawaban no 6
7. Bayangan titik A (4,1) oleh pencerminan terhadap garis x =2 dilanjutkan pencerminan terhadap garis x = 5 adalah titik…. 
A. A” (8,5) 
B. A” (10,1)
C. A” (8,1) 
D. A” (4,5)
E. A” (20,2)

Jawaban : B

Pembahasan : 
soal transformasi geometri dan jawaban no 7
8. T1 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8 dan T2 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8-1 Bayangan A (m,n) oleh transformasi T1 o T2 adalah (-9,7). Nilai m+n sama dengan…
A. 4
B. 5
C. 6
D. 7
E. 8 

Jawaban : B

Pembahasan : 
soal transformasi geometri dan jawaban no 8
9. Bayangan ∆ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (0,90°) adalah…
A. A” (-1,-2), B” (1,6) dan C” (-3,-5)
B. A” (-1,-2), B” (1,-6) dan C” (-3,-5)
C. A” (1,-2), B” (-1,6) dan C” (-3,5)
D. A” (-1,-2), B” (-1,-6) dan C” (-3,-5)
E. A” (-1,2), B” (-1,-6) dan C” (-3,-5)

Jawaban : D

Pembahasan : 
soal transformasi geometri dan jawaban no 9
10. Persamaan peta kurva y = x² – 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah…
A. 3y + x² – 9x + 18 = 0
B. 3y – x² + 9x – 18 = 0
C. 3y – x² + 9x + 18 = 0
D. 3y + x² + 9x + 18 = 0
E. y + x² + 9x – 18 = 0 

Jawaban : A

Pembahasan : 
pencerminan terhadap sumbu x:
P ( x , y ) → P ‘ ( x , – y )
Dilatasi terhadap titik pusat O(0,0) dengan factor skala 3 :
[O, k] : P(x,y) → P'(kx, ky)
[O,3k] : P(x,y) → P'(3x, 3y)
pencerminan terhadap sumbu x dilanjutkan dilatasai
dengan pusat O dan factor skala 3 :
P(x,y) → P ‘(x, -y) → P ”(3x, -3y)
soal transformasi geometri dan jawaban no 10

11. Luas bayangan persegipanjang PQRS dengan

P(-1,2), Q(3,2), R (3,-1), S(-1,-1)

karena dilatasi [0,3] dilanjutkan rotasi pusat O bersudut π/2 adalah…

A. 36

B. 48

C.72

D. 96

E. 108

Jawaban : E

Pembahasan : 

dilatasi [0,3] :

[O,3k] : P(x,y) → P ‘(3x, 3y)

soal transformasi geometri dan jawaban no 11

Sehingga :

P(x,y) → P” (-3y, 3x)

P(-1,2), Q(3,2), R (3,-1), S(-1,-1)

P(-1,2) → P” (-6,-3)

Q(3,2) → Q” (-6,9)

R (3,-1) → R” (3,9)

S(-1,-1) → S” (3,-3)

Buat sketsa gambarnya:

soal transformasi geometri dan jawaban no 11-1

Sehingga luas transformasinya adalah :

Panjang (p) x lebar (l) = 12 x 9 = 108 satuan luas

12. Segitiga ABC dengan A(2,1), B(6,1), C(6,4) ditransformasikan dengan matriks transformasi soal transformasi geometri no 12 Luas bangun hasil transformasi segitiga ABC adalah….

A. 56 satuan luas 

B. 36 satuan luas

C. 28 satuan luas

D. 24 satuan luas 

E. 18 satuan luas

Jawaban : E

Pembahasan : 

misalkan T = soal transformasi geometri no 12maka

Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC |det T| = |ad –bc| = |3-0| = 3

luas ∆ ABC :

buat sketsa gambar :

soal transformasi geometri dan jawaban no 12

Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC

= 3 x 6 = 18 satuan luas

13. Tentukan bayangan lingkaran (x-3)2 + (y+1)2 = 4 jika ditranslasikan 

 

a. 5

b. 4

c. 3

d. 2

e. 1

Jawaban : B

Pembahasan : 

Ambil sembarang titik P(a,b) pada lingkaran (x-3)2 + (y+1)2 = 4 sehingga diperoleh (a-3)2 + (b+1)2 = 4

soal transformasi geometri no 13-1

14. ABCD adalah sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh dilatasi [O,2]!

Jawaban :  

Pembahasan : 

soal transformasi geometri no 14

15. Jika titik A(15,8) dicerminkan terhadap garis x=7, maka bayangan titik A adalah titik A’ dengan koordinat….

Jawaban : 

Pembahasan : 

soal transformasi geometri no 15


DAFTAR PUSTAKA :  https://soalkimia.com/contoh-soal-transformasi-geometri/

Monday, October 5, 2020

SOAL DAN PEMBAHASAN MATEMATIKA SMA KELAS 11 SEMESTER GANJIL


M. Aydin Ramadhan (19) XI IPS 2

Question 1

No 1. Diketahui premis-premis berikut Premis1 Jika masyarakat mencampakkan sampah pada tempatnya maka lingkungan bersih. Premis 2: Jika lingkungan bersih maka hidup akan nyaman. Kesimpulan yang sah dari kedua premis tersebut adalah...

Jawaban :
Jika masyarakat membuang sampah pada tempatnya maka hidup akan nyaman.

No 2. Buktikan dengan induksi matematika bahwa P 1 + 3 + 5 ++ (2n-1) = n bernilai benar untuk setiap n bilangan asli. 

Jawaban :
Untuk pembuktian suatu rumus tersebut benar (berlaku), bisa kita gunakan induksi matematika, yang terdiri dari dua langkay yaitu:

Buktikan untuk n = 1 benar
Misal untuk n = k benar, akan dibuktikan untuk n = (k + 1) juga benar
Pembahasan
1 + 3 + 5 + 7 + ... + (2n – 1) = n²

Langkah pertama  

Akan dibuktikan untuk n = 1 Benar

(2n – 1) = n²

2(1) – 1 = 1²

2 – 1 = 1

1 = 1 (benar)

Langkah kedua

Misal untuk n = k benar

1 + 3 + 5 + 7 + ... + (2k – 1) = k²

Akan dibuktikan untuk n = (k + 1) juga benar

1 + 3 + 5 + 7 + .... + (2k – 1) + (2(k + 1) – 1) = (k + 1)²

|__________________|  

                     k² + (2(k + 1) – 1) = (k + 1)²

                                         k² + 2k + 2 – 1 = (k + 1)²

                                               k² + 2k + 1 = (k + 1)²

                                                     (k + 1)² = (k + 1)²

                                                          (Benar)

Jadi TERBUKTI bahwa 1 + 3 + 5 + 7 + ... + (2n – 1) = n² berlaku untuk setiap n bilangan asli.

No 3 





No 4 

Membuktikan dengan induksi matematis .
buktikan bahwa pernyataan berikut bernilai benar.
a) 1per 1.2 + 1per 2.3 + 1 per 3.4 +.... + 1 per n ( n+1 ) = n per n+ 1 untuk setiap bilangan asli

Jawaban


No 5
buktikan dengan induksi matematika bahwa a^2n-1+b^2n-1 habis dibagi oleh a+b untuk semua bilangan asli n

Jawaban


No 6

Buktikan dengan induksi matematika bahwa : 5^2n + 3n - 1 habis dibagi 9 !

Jawaban


No 7

Buktikan untuk masing masing bilangan asli n _> 5 akan berlaku 2n-3<2n-2

Jawaban

n_>5={1,2,3,4,5}

2n-3<2n-2

=2(1)-3<2(1)-2

=(-1)<0(benar)

2(2) -3<2(2) -2

=1<2 (benar)

2(3) -3<2(3) -2

=3<4(benar)

2(4) -3<2(4) -2

=5<6( benar)

2(5) -3<2(5) -2

=7<8( benar)

No 8

penyelesaian dari sistem persamaan 2x-3y=-13 dan x+2y=4 adalah?

Jawaban 


No 9

Harga 5 kg gula dan 30 kg beras adalah Rp410.000,00, sedangkan harga 2 kg gula dan 60 kg beras adalah Rp740.000,00. Harga 2 kg gula dan 5 kg beras adalah ....

Jawaban

gula = x
beras = y
5x + 30y = 410.000 |*2
2x + 60y = 740.000 |*1

10x + 60y = 820.000
2x + 60y = 740.000 
_________________-

8x = 80.000
x = 10.000

subtitusikan x nya ke persamaan
 2x + 60y = 740.000
2(10.000) + 60y = 740.000
20.000 + 60y = 740.000
60y = 720.000
y = 12.000

jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000
maka 2kg gula dan 5kg beras
= 2(10.000) + 5(12.000)
= 20.000 + 60.000
= Rp 80.000

No 10

Jawaban

No 11

Jawaban


Question 2

No 12

Daerah penyelesaian sistem pertidaksamaan 5x + 6y ≥ 30; -2x + y ≤ 0 ; y ≥ 2 ditunjukan oleh daerah...

Jawaban


No 13

Daerah yang diarsir pada gambar di bawah adalah himpunan penyelesaian dari sistem pertidaksamaan…



Jawaban



No 14

Tentukan nilai maksimum dari 3x + 2y yang memenuhi x + y ≤ 5 , x ≥ 0 , y ≥ 0, dan x , y ∈ R.

Jawaban

Jadi, nilai maksimum dicapai pada titik (5,0) yaitu: 3 . 5 + 2 . 0 = 15.


Question 3

No 15. Luas sebuah tempat parkir adalah 420 m2.  Tempat parkir yang diperlukan oleh sebuah sedan adalah 5 m2 dan luas rata-rata sebuah truk 15 m2.  Tempat parkir tersebut dapat meminta tidak lebih dari 60 kendaraan.  Biaya parkir untuk sedan Rp3.000.00 dan untuk sebuah truk Rp5.000,00.  Jika banyak sedan yang diparkir x buah dan banyak truk y buah, model matematika dari masalah tersebut adalah

Jawaban

sedan: x

truk: y

5x+ 15y ≤420

x+ 3y ≤84

x+y ≤60

x≥0, y≥0

maka Model:

x+ 3y ≤84 ;x+y ≤60 ; x≥0 ;y≥0

No 16 seorang penjahit memiliki persediaan 20 m kain polos dan 20 m kain bergaris untuk membuat 2 jenis pakaian. pakaian model I memerlukan 1 m kain polos dan 3 m kain bergaris.pakaian model II memerlukan 2 m kain polos dan 1 m kain bergaris.pakaian model I dijual dengan harga Rp150.000,00 per potong,dan pakaian model II dijual dengan harga Rp100.000,00 per potong.penghasilan maksimum yang dapat diperoleh penjahit tersebut adalah ....

jawaban

no 17

Diketahui matriks A = ( 2 3 -1 4 ) dan matriks B = ( 1 4 -2 5 ). Jika matriks C = 2A^t - B maka determinan dari matriks C adalah....​

Jawaban

no 18

Matriks At adalah transpose matriks A. Jika matriks C = (4/7 -1/7 -1/7 2/7) B = (4 2 2 8) dan A = C-1 maka determinan dari matriks At.B adalah...

Jawaban


No 19

Jika matriks a 2x+1 3 6x-1 5 tidak mempunyai invers.maka nilai x adalah

Jawaban


No 20

diketahui matriks a= ( 3, y, 5,-1) , b= ( x,5,-3,6), dan c = ( -3,-1, y, 9) . jika a+ b - c = ( 8, 5x, -x , -4) nilai x + 2xy + y adalah..

Jawaban



Question 4

No 21



No 22

Suatu perusahaan pakaian, JCloth, memiliki dua pabrik yang terletak di Surabaya dan Malang. Di dua pabrik tersebut, JCloth memproduksi dua jenis pakaian, yaitu kaos dan jaket. Perusahaan tersebut memproduksi pakaian yang kualitasnya dapat dibedakan menjadi tiga jenis, yaitu standard, deluxe, dan premium. Tahun kemarin, pabrik di Surabaya dapat memproduksi kaos sebanyak 3.820 kualitas standard, 2.460 kualitas deluxe, dan 1.540 kualitas premium, serta jaket sebanyak 1.960 kualitas standard, 1.240 kualitas deluxe, dan 920 kualitas premium. Sedangkan pabrik yang terletak di Malang dapat memproduksi kaos sebanyak 4.220 kualitas standard, 2.960 kualitas deluxe, dan 1.640 kualitas premium, serta jaket sebanyak 2.960 kualitas standard, 3.240 kualitas deluxe, dan 820 kualitas premium dalam periode yang sama.

JCloth

1. Tulislah “matriks produksi” dengan ordo 3 × 2 untuk masing-masing pabrik (S untuk Surabaya dan M untuk Malang), dengan kolom kaos, kolom jaket, dan tiga baris yang menunjukkan banyaknya jenis-jenis pakaian yang diproduksi.
2. Gunakan matriks dari poin 1 untuk menentukan banyaknya pakaian yang telah diproduksi oleh pabrik di Surabaya dan Malang.
3. Gunakan perkalian skalar untuk menentukan berapa banyak pakaian dari masing-masing jenis yang akan diproduksi di Surabaya dan Malang, jika perkiraan peningkatan produksinya adalah 4%.
4. Berapa total banyak pakaian yang diproduksi oleh JCloth (di kedua pabrik) pada tahun depan, untuk setiap jenis pakaian?

Jawaban


No 23

Arman membeli 5 pensil dan 3 penghapus, sedangkan susi membelu 4 pensil dan 2 penghapus di toko yang sama. Di kasir, arman membayar Rp. 11.500 sedangkan susi membayar RP. 9.000. Jika doni membeli 6 dan 5 penghapus, berapa ia harus membayar

Jawaban

x = pensil

y = penghapus


5x + 3 y = 11.500 (x2)

4x + 2 y = 9.000 (x3)

_______________

10x + 6 y = 23.000

12x + 6y = 27.000

_______________ (-)

-2x = -4.000

x = 2.000


4x + 2y = 9.000

4*2000 + 2y = 9000

2y = 1000

y = 500


jadi harga pensil = 2000 dan penghapus = 500

sehingga doni harus membayar 6*2000 + 5*500 = 12.000+2.500 = 14.500


No 24

Bu Ani seorang pengusaha makanan kecil yang menyetorkan dagangannya ke tiga kantin sekolah. Tabel banyaknya makanan yang disetorkan setiap harinya sebagai berikut. Kacang Keripik Permen Kantin A | 10 | 10 | 5 | Kantin B | 20 | 15 | 8 | Kantin C | 15 | 20 | 10 | (Dalam satuan bungkus) Harga sebungkus kacang, sebungkus keripik, dan sebungkus permen berturut-turut adalah Rp 2.000,00; Rp 3.000,00; dan Rp 1.000,00. Pertanyaan: a. Nyatakan banyaknya makanan yang disetorkan setiap harinya dengan matriks b. Nyatakan harga makanan dalam bentuk matriks c. Hitung pemasukan Bu Ani dari setiap kantin dengan cara perkalian matriks d. Carilah determinan matriks dari banyaknya makanan yang disetorkan setiap harinya


Jawaban


No 25

Lisa dan muri bekerja pada pabrik tas. Lisa dapar menyelesaikan 3 buah setiap jam dan muri dapat menyelesaikan 4 tas setiap jam jumlah jam kerja lisa dan muri adalah 16 jam sehari dengan jumlah tas yang dibuat oleh keduanya adalah 55 tas. Jika jam kerja keduanya berbeda, lisa bekerja selama x jam dan muri bekerja selama y jam, maka model matematika penyrlrsaian masalah tersebut menggunakan matriks adalah

Jawaban

Remedial PAT