Sunday, December 6, 2020

Sunday, November 22, 2020

PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOAL

 PERTUMBUHAN, BUNGA TUNGGAL, BUNGA MAJEMUK, BUNGA ANUITAS, PELURUH DAN BEBERAPA CONTOH SOAL


Bunga

Bunga adalah selisih antara jumlah nominal uang yang dipinjamkan oleh pemilik modal dengan jumlah yang dikembalikan oleh pemakai modal berdasarkan kesepakatan bersama. Besarnya bunga dipengaruhi oleh besar uang yang dipinjam, jangka waktu peminjaman, dan tingkat suku bunga (persentase). 









Terdapat dua jenis bunga yaitu bunga tunggal dan bunga majemuk.

Bunga Tunggal

Bunga tunggal adalah bunga yang dibayar pada setiap periode dengan besaran tetap. Besarnya bunga tunggal dihitung berdasarkan perhitungan modal awal.

Rumus : 

Mn = Modal pada akhir periode
M0 = Modal awal
n = periode
b = presentase

Contoh

Diketahui modal pinjaman Rp1.000.000 dengan bunga sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah ….

M_n = 1.000.000 (1 + 5 \times \frac{2}{100}) = Rp1.100.000


Bunga Majemuk

Bunga majemuk adalah bunga yang diberikan berdasarkan modal awal dan akumulasi bunga pada periode sebelumnya.Bunga majemuk memiliki banyak variasi dan selalu berubah (tidak tetap) pada tiap-tiap periode. Contohnya saat menjual sebuah kendaraan, harga kendaraan yang dijualakan berubah setiap periode dan perubahannya bervariasi.

Rumus =

Contoh

diketahui modal pinjaman Rp1.000.000 dengan bunga majemuk sebesar 2 \% per bulan, maka setelah 5 bulan modalnya adalah


Bunga Anunitas

Anuitas yang diberikan secara tetap pada setiap akhir periode mempunyai dua fungsi yaitu membayar bunga atas hutang dan mengangsur hutang itu sendiri.
















Contoh

Pada tanggal 1 januari bu rani meminjam uang di koperasi sebesar Rp 2.000.000,00. pinjaman itu akan dilunasi dengan 4 kali angsuran. Suku bunga 12% setahun setiap 3 bulan. Tentukan besar anuitasnya

Diket : 
M = 2.000.000 
i = 12% = 0,12 
n = 4 

Ditanya : A = ? 
Jawab : 
𝐴 = 𝑀. 𝑖 /1 − ( 1 + 𝑖) −𝑛 
𝐴 = 2.000.000 𝑥 0,12/ 1 − ( 1 + 0,12) −4 
𝐴 = 240.000 /1 − ( 1,12) −4 
𝐴 = 240.000 /0,36448 = 658472,344 
Jadi anuitasnya Rp 658.472,34

Pertubuhan

Pertumbuhan merupakan kenaikan jumlah pada tiap periode waktu berdasarkan suatu rasio pertumbuhan. Jika jumlah awal adalah J_0 dan rasio adalah r per tahun, maka pada akhir tahun ke-n, jumlah akhirnya menjadi J_n:

J_n = J_0(1+r)^n

Contoh, jumlah penduduk 10.000 jiwa dengan pertumbuhan penduduk 5% per tahun, maka pada akhir tahun ke-4, jumlahnya

J_n = 10.000 (1+0.05)^4 = 12.155\ jiwa


Penyusutan

Penyusutan atau depresiasi adalah pengurangan nilai dari harta tetap terhadap nilai buku atau nilai beli awalnya. Penyusutan dilakukan secara berkala dalam rangka pembebanan biaya pada pendapatan, baik atas penggunaan harta tersebut maupun karena sudah tidak memadai lagi.

Jika harga sebuah barang pada saat dibeli adalah M_0 dan mengalami penyusutan tiap tahunnya sebesar p (dalam persen) dari harga belinya, maka nilai barang pada akhir tahun ke-n adalah :

M_n = M_0(1 - np)

Contoh, harga mobil Rp100.000.000 menyusut harganya 10% tiap tahun. Di akhir tahun ke-5 nilainya

M_n = 100.000.000(1 - 5 \times 0.1) = 50.000.000

Monday, November 16, 2020

SOAL DAN PEMBAHASAN PAS MATEMATIKA KELAS 11 SEMESTER GANJIL

 1. Diketahui premis-premis berikut :

Premis 1 =  Jika masyarakat membuang sampah pada tempatnya maka lingkungan bersih

Premis 2 = Jika lingkungan bersih maka hidup akan nyaman

simpulan yang sah dari kedua premis tersebut adalah 

Jika masyarakat membuang sampah pada tempatnya maka hidup akan jadi nyaman


2. 




3. 


4. 


5. 


6. 


7. n_>5={1,2,3,4,5}

2n-3<2n-2
=2(1)-3<2(1)-2
=(-1)<0(benar)

2(2) -3<2(2) -2
=1<2 (benar)

2(3) -3<2(3) -2
=3<4(benar)

2(4) -3<2(4) -2
=5<6( benar)

2(5) -3<2(5) -2
=7<8( benar)


8. 



9. diket :

5kg gula + 30kg beras = 410.000

2kg gula + 60kg beras = 740.000

Dit : 2kg gula + 5kg beras ?

Jwb :

gula = x

beras = y

5x + 30y = 410.000 |*2

2x + 60y = 740.000 |*1


10x + 60y = 820.000

2x + 60y = 740.000 

_______-


8x = 80.000

x = 10.000


subtitusikan x nya ke persamaan

 2x + 60y = 740.000

2(10.000) + 60y = 740.000

20.000 + 60y = 740.000

60y = 720.000

y = 12.000


jadi, harga 1kg gula = Rp 10.000 dan 1kg beras = Rp 12.000

maka 2kg gula dan 5kg beras

= 2(10.000) + 5(12.000)

= 20.000 + 60.000

= Rp 80.000



10. tentukan daerah bersih dari pertidaksamaan linear berikut 5x + 3y ≤ 15

jawaban :

5x + 3y ≤ 15            uji 0

x = 0  | x = 0            5(0) + 3(0) ≤ 15

y = 5  | y = 3                            0 ≤ 15 (benar)




11.  2x - 5y > 20

Cara penyelesaian :

a. Mencari x dan y

x 0 10

y -4 0


b. Menentukan dan letak daerah kotor

2(0) - 5(0) > 20

0 > 20 (salah)

c. Membuat garis koordinat





12.

5x + 6y ≥ 30 (0,5) (6,0) *karena a positif dan tanda ≥ maka daerahnya berada di kanan garis


2x + y  ≤ 0 (0,0) (0,0) *karena a negatif dan tanda ≤ maka daerahnya berada di kanan garis 


Y ≥ 2 *daerah berada pada rentang y ≥ 2, y € r

Maka daerah penyelesaian dari model mtk tsb berada di daerah III



13. Daerah yang diarsir pada gambar adalah himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.

Penyelesaian Soal :

LANGKAH PERTAMA (I)

Buatlah sistem pertidaksamaan pada setiap garis dengan menggunakan cara sebagai berikut :

Persamaan garis I melalui titik (0,6) dan (10,0) sehingga :

ax + by = ab

6x + 10y = 6.10

6x + 10y = 60     .... (÷2)

3x + 5y = 30

Kemudian perhatikan daerah arsiran yang mengarah ke bawah atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

3x + 5y = 30

3.0 + 5.0 = 30

0 + 0 = 30

0 ≤ 30  (Benar)

Pertidaksamaannya : 3x + 5y ≤ 30

Persamaan garis II melalui titik (0,-4) dan (2,0) sehingga :

ax + by = ab

-4x + 2y = (-4).2

-4x + 2y = -8     .... (÷ 2)

-2x + y = -4

Kemudian perhatikan daerah arsiran yang mengarah ke sisi kiri atau melalui titik (0,0). Jika arsiran melalui titik (0,0) maka jika diuji titik (0,0)  pernyataan dikatakan benar :

-2x + y = -4

(-2).0 + 0 = -4

0 + 0 = -4

0 ≥ -4  (Benar)

Pertidaksamaannya :

-2x + y ≥ -4    .... (× -1)

2x - y ≤ 4

Kemudian pada arsiran juga terdapat garis x ≥ 0 dan y ≥ 0.

Sehingga pertidaksamaannya adalah :

3x + 5y ≤ 30 ; 2x - y ≤ 4 ; x ≥ 0 dan y ≥ 0.



14. Nilai Maksimum 3x + 2y ?

x + y > 5

sumbu x ; y = 0 ( 5, 0)

sumbu y ; x = 0 ( 0, 5)


maka Nilai Maksimumnya adalah

3x + 2y

( 5, 0) = 3(5) + 2(0) = 15

(0, 5) = 3(0) + 2(5) = 10

Nilai maksimum nya adalah 15



15.Diketahui=

X = banyaknya sedan

Y = banyaknya truk


Luas Parkiran:

sedan= 15

Truk = 15

Kapasitas 420


Kuantitas:

sedan= 1

Truk = 1

Kapasitas 60


Jawab:

•Persamaan garis 1 : 5x + 15y = 4200

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

5x + 15y = 4200 disederhanakan menjadi

5x + 15y ≤ 4200


•Persamaan garis 2 : x + y = 60

Titik (0,0) merupakan salah satu himpunan penyelesaian dari

pertidaksamaan tersebut sehingga diperoleh

x + y = 60 disederhanakan menjadi

x + y ≤ 60


•Kendala non negative diberikan oleh

X ≥ 0, y ≥ 0


•Jadi model matematika nya

5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0


Jawaban: 5x + 15y ≤ 4200; 4x + y  ≤ 60 ; x  ≥ 0, y  ≥ 0



16. diket :

- Model I memerlukan 1 m kain polos dan 3 m kain bergaris.

- Model II memerlukan 2 m kain polos dan 1 m kain bergaris.

- Persediaan kain polos 20 m

- persediaan kain bergaris 20 m

- Harga jual model I Rp.150.000,00

- Harga jual model II Rp.100.000,00


Dit : Penghasilan maksimum yang dapat diperoleh  = ...


Jwb : 

(1) Kita Buat Tabel Untuk memudahkan:

Model   ||    Polos  ||  Garis  ||  Harga

   I         ||       1       ||     3      ||  150.000

  II         ||       2      ||      1      ||  100.000

Stok      ||       20    ||      20   ||   maksimum


(2) Kita buat kalimat matematika dari Tabel diatas Dengan kain polos sebagai (x) dan kain bergaris sebagai (y) :

x + 2y ≤ 20

3x + y ≤ 20

dengan :

x ≥ 0

y ≥ 0

Dan Fungsi Tujuan adalah harga jual :

150.000x + 100.000y


(3) Tentukan nilai fungsi x dan y pada grafik fungsi :

Dari x + 2y = 20 :

x = 0, y ⇒ 0 + 2y = 20

            ⇒       2y = 20

            ⇒          y = 20/2

            ⇒          y = 10

Titik Koordinat ⇒ (0,10)

y = 0, x ⇒ x + 2y = 20

            ⇒ x  + 0  = 20

            ⇒         x  = 20

Titik Koordinat ⇒(20,0)


Dari 3x + y = 20

x = 0 , y ⇒ 3x + y = 20

             ⇒ 0   + y = 20

Titik Koordinat ⇒ (0,20)

y = 0, x ⇒ 3x + y = 20

            ⇒ 3x + 0 = 20

            ⇒ 3x        = 20

            ⇒   x        = 20/3

Titik Koordinat ⇒ (20/3,0)


Dari Titik - titik tersebut tarik garis lurus hingga terhubung.

Lalu kita cari titik potong dari garis tersebut, dengan metode eliminasi dan subtitusi :

Eliminasi y :

x + 2y = 20  | x 1  |   x + 2y = 20

3x + y = 20  | x 2 | 6x + 2y = 40

                            ============  -

                             -5x          = -20

                                x           = 20/5

                                x           = 4

Subtitusikan nilai x pada persamaan 3x + y = 20 :

3 . 4 + y = 20

12 + y = 20

       y = 20 - 12

       y = 8

Koordinat titik potong garis pada (4,8)


(4) Selanjutnya Dari Titik - titik yang berpotongan kita uji dengan :

Fungsi Tujuan f(x,y) = 150.000x + 100.000y :

Ada 3 titik pada Grafik (perhatikan lampiran)

A. Titik (0,10) = 150.000 . (0) + 100.000 . (10) =

                      = 0 + 1.000.000 = 1.000.000

B. Titik (4,8) = 150.000 . (4) + 100.000 . (8) =

                      = 600.000 + 800.000 = 1.400.000

C. Titik (20/3,0) = 150.000 . (20/3) + 100.000 . (0) =

                        = 1.000.000 + 0 = 1.000.000


Dari Hasil Uji diatas dapat dilihat, penghasilan terbesar pada titik (4,8) yaitu sebesar Rp.1.400.000,00


17. 



18.


 
Det(AtB) = (10.34) – (12.12) = 340 – 144 = 196



19. Diketahui

A = 

Matriks A tidak mempunyai invers

Ditanyakan  

x = .... ?

Jawab

Suatu matriks tidak mempunyai invers jika determinan matriks tersebut sama dengan nol


|A| = 0

(2x + 1)(5) – 3(6x – 1) = 0

10x + 5 – 18x + 3 = 0

8 – 8x = 0

8 = 8x

x = 

x = 1


20. 



21. 



22.
1-1 Tabel

Sehingga, kita mendapatkan matriks-matriks produksi S dan M sebagai berikut.
1-1 Matriks

Untuk menentukan banyaknya total pakaian yang diproduksi oleh JCloth, kita jumlahkan matriks S’ dengan M’ seperti berikut.1-4 Matriks

Dari penjumlahan matriks di atas, kita memperoleh informasi banyaknya pakaian yang akan diproduksi oleh JCloth. Dengan menjumlahkan semua elemen-elemen matriks penjumlahan tersebut, kita peroleh bahwa banyaknya pakaian yang akan diproduksi oleh JCloth kurang lebih 28.142.


23. pensil (x) dan penghapus (y)

Maka:
5x + 3y = 11.500 | x2 | 10x + 6y = 23000
4x + 2y = 9000 | x3 | 12x + 6y = 27000
——————-—-
-2x = -4000
x = 2000

5x + 3y = 11500
5(2000) + 3y = 11500
10000+ 3y = 11500
3y = 1500
y = 500

6(2000) + 5(500)
12000 + 2500
=14.500

 

24. Banyaknya makanan yang disetorkan setiap harinya adalah,


Matriks A = 
 
Matriks harga makanan adalah,

Matriks B = 

⇔ AB = pemasukan harian Bu Ani
⇔ AB = 
⇔       = 
⇔       = 
⇔       = 

Jadi, pemasukan harian yang diterima Bu Ani dari setiap kantin A, kantin B, dan kantin C berturut-turut adalah Rp 55.000,00; Rp 93.000,00; dan Rp 100.000,00.

Total pemasukan harian Bu Ani dari seluruh kantin adalah Rp 55.000,00 + Rp 93.000,00 + Rp 100.000,00 = Rp 248.000,00



25.

x + y = 16

3x + 4y = 55

Jika ditulis dalam bentuk matriks:





Jadi, Lisa bekerja selama 9 jam sedangkan Muri bekerja selama 7 jam.


26. Transformasi geometri ↓

1. Translasi (pergeseran)

Translasi adalah perubahan objek dengan cara menggeser objek dari satu posisi ke posisi lainnya dengan jarak tertentu.

2. Refleksi (pencerminan)

3. Rotasi (perputaran)

Rotasi atau perputaran adalah sebuah perubahan kedudukan objek dengan cara diputar melalui pusat dan sudut tertentu.

4. Dilatasi (perbesaran)

  •    Pelajari Lebih Lanjut → Berdasarkan gambar, tentukan translasi T yang menggeser masing masing objek tersebut brainly.co.id/tugas/18268754

Refleksi merupakan salah satu bagian dari transformasi geometri, dimana benda yang kita refleksikan akan berlawanan arah dengan benda aslinya.

Pencerminan terhadap sumbu x

A(a, b) → sb x → A'(a, -b)

Pencerminan terhadap sumbu y

A(a, b) → sb y → A'(-a, b)

Pencerminan terhadap garis y = x

A(a, b) → gr y = x →  A'(b, a)

Pencerminan terhadap garis y = -x

A(a, b)  → gr y = -x → A'(-b, -a)

Pencermianan terhadap titik pangkal koordinat

A(a, b)  → titik pangkal →  A'(-a, -b)

Pencerminan terhadap garis x = h

A(a, b) → garis x = h → A' (2h - a, b)

Pencerminan terhadap garis y = k

A(a, b) → garis y = k → A'(a, 2k - b)

  •    Pelajari Lebih Lanjut → Bayangan titik A(4, 6) karena refleksi terhadap garis y = 2, yang kemidian di lanjutkan dengan refleksi terhadap garis x = -1 adalah brainly.co.id/tugas/22484

Penyelesaian Soal

Bayangan titik A (-1, 4) oleh refleksi terhadap garis y= -x

Pencerminan terhadap garis y = -x

A(a, b)  → gr y = -x → A'(-b, -a)

A(-1, 4) → gr y = -x → A'(-4, -(-1)) = (-4, 1)



27. (x, y) dicerminkan thp sumbu x : (x, -y) kemudian

(x, -y) dicerminkan thp sumbu y : (-x, -y)

Jadi

-x = x' => x = -x'
-y = y' => y = -y'

Bayangan dari : y = 3x² + 2x - 1 adalah
(-y') = 3(-x')² + 2(-x') - 1
-y' = 3x'² - 2x' - 1
y = -3x² + 2x + 1


28. Matriks refleksi y = x adalah:


Matriks rotasi 90° berlawanan jarum jam di pusat (0,0) adalah:


Menghasilkan komposisi transformasi:


Memberikan:


Yang mana:
x = -x'
y = y'

Substitusi ke persamaan yang akan menghasilkan:


29. Kita  siapkan variabel-variabel x dan y sebagai variabel awal, x' dan y' sebagai variabel bayangan setelah pencerminan garis, dan x" serta y" sebagai variabel bayangan setelah translasi.

Step-1 pencerminan garis x = k

Untuk x = 2

(x' , y') = (2(2) - x, y)

(x' , y') = (4 - x, y) akan disubtitusi ke Step-2

Step-2 translasi (- 3, 4)

Translasi (a, b) dengan a = -3 dan b = 4.

(x", y") = (x' + (- 3), y' + 4)

(x", y") = (4 - x + (- 3), y + 4)

(x", y") = (1 - x, y + 4)

Sehingga, x" = 1 - x dan y" = y + 4

Setelah diatur dengan pindah ruas menjadi 

Substitusikan ke bentuk awal x²+ y² = 4

⇔ (1 - x")² + (y" - 4)² = 4

Selanjutnya tanda aksen dapat dihilangkan

⇔ (1 - x)² + (y - 4)² = 4  

⇔ x² - 2x + 1 + y² - 8y + 16 = 4

⇔ x² + y² - 2x - 8y + 1 + 16 - 4 = 0

Kesimpulan

Dari langkah-langkah pengerjaan di atas, diperoleh persamaan bayangan lingkaran 


30. A(3,-2)

dipetakan oleh T(1 -2)

x' = x + 1 = 3 + 1 = 4
y' = y + (-2) = -2 + (-2) = -4

Bayangan A = A' = (4,-4)

lanjut rotasi [O , 90°]

x" = -y' = -(-4) = 4
y" = x' = 4

Bayangan akhir = A" = (4,4)


31. 


32. • refleksi thd sb x

x' = x

y' = -y

Bayangan

y = x² + 3x + 3

-y' = x'² + 3x' + 3

y = -x² - 3x - 3

• lanjut dilatasi [O, 4]

x' = 4x → x = 1/4 x'

y' = 4y → y = 1/4 y'

Bayangan akhir

y = -x² - 3x - 3

1/4 y' = -(1/4 x')² - 3(1/4 x') - 3

1/4 y = -1/16 x² - 3/4 x - 3

Kedua ruas kalikan 4

y = -1/4 x² - 3x - 12 ✔


33. 



34. 


35. 



36. maka
U1,U2,U3,...
50.000, 55.000, 60.000,....
maka 
a=50.000
b=5.000(beda per bulan)
yg ditanyakan=jumlah tabungan dlm 2 tahun, maka jumlah tabungan dalam 24 bulan
maka
Sn=n/2(a+Un)
cari Un dulu
Un=a+(n-1)b
U24 =50.000+(24-1)5.000
U24=50.000+23x5.000
U24=50.000 + 115.000
U24=165.000
lalu
Sn=n/2(a+Un)
S24=24/2(50.000+165.000)
S24=12(215.000)
S24=2.580.000


37. 

 
38. 


39. 


40.  

Remedial PAT